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&act. It is shown how all orthomodular posets (of various kinds) are constructible from 
families of sets satisfying various conditions, usually with the generating family emerging as 
identical with (or contained in) the family of frames (that is, maximal orthogonal subsets of 
the non-zero elements) of the constructed orthomodular poset. 

1. Introduction 

In his investigations into orthomodular posets (hereinafter abbreviated 
“0.m.p.“) and quantum logic, Finch [ 1, 21 has considered the construc- 
tion of o.m.p. from sets of “overlapping” Boolean lattices having a com- 
mon O-element and a common l-element, and satisfying five other cond- 
itions. Such a collection of Boolean lattices Finch terms a ZogicaZ struc- 
ture, and he has shown in [ 11 that from any given logical structure there 
can be constructed an o.m.p., and that all o.m.p. can be so constructed, 
This paper extends this approach significantly by considering what con- 
ditions imposable on an arbitrary family of sets are sufficient for the 
construction of an o.m.p. therefrom, and in such a way that all o.m.p. 
can be so constructed from some such family of sets. Various sets of 
conditions are obtained, depending on whether the resulting o.m.p. is 
required to be completely orthomodular, atomic, etc. 

Elements x and y in an orthocomplemented poset (P, <,I) are ortho- 
gonal if x 2 y’, and P is an orthoposet if the least upper bound x vy 
exists in P for any orthogonal x, y E P. X E P is orthogonal if all pairs 
of distinct elements of X are orthogonal. X is a maximal orthogonal sub- 
set of Y C_ P if X is an orthogonal subset of Y and there is no y E Y \ X 
such that X U Cy} is orthogonal. F E P is a frame of P if F is a maximal 
orthogonal subset of P\ (0)) where 0 is the least element of P. We follow 
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Finch [ I] in using the term “frame” in this sense. A frame F is complete 
if VX exists in P for any X C_ F. For a complete frame F of P, define 
B(F‘, = (VX: X s F-J. 

An orthoposet P is orthomodular if x =J*’ for any orthogonal x, J 
E P such that x v y = 1. An o.m.p. is completely orthomodular if it is 
a complete orthoposet, that is, if VX exists in P for any orthogonal 
X E P. x dominates y if y i x, and Y G P is a section of P if every non- 
zero element of P dominates some element of Y. 

We state the following elementary lemmas for later reference. 

Lemma 1.1. Let (P, <,I) be an orthocomplemented poset and let 
S C_ P \ (Cl), then S is a frame oj‘P * S is orthogonal and VS = 1. 

Lemma 1.2. Let A be a section of the o.m.p. (P, 2, 1). Let y E P and 
de,fine Y = {x E A : x 5 y>, then 

(i) Y contains a maximal orthogonal subset [v ] , and 
(ii) if V[y] exists in P, then V[y] = y. 

Lemma 1.3. An orthoposet (P, 5, 1) is orthomodular * for any x, y E P, 
if’x <_ y, then there is a complete frame F of P such that x, y E B(F>. 

2. Consistent complete families 

Let N and E denote respectively the set of natural numbers and the 
set of even natural numbers, and let 1X1,3 (X) and 0 denote respecti- 
vely the number of elements in X, the power set of X, and the empty set 

A family is any nonempty set of nonempty sets. For any family y = 
{F,, : 0 E B}, F* will denote the set of all subsets of elements of 9, that 
is, F* = U (9 (F,): @ E B}. We will be concerned, basically, with multi- 
ply applied operations on elements on F*, for which we will need a 
special notation, as follows. 

Let 9 = {Fp: /3 E B} be a family, X E F*, and p f B. Define X[/?] as 
FD \ X if X C_ Fp (otherwise undefined). Let n E N and (pi) E Bn, then 
define 

ifn=O, 
1, . . . . &_I ] [& 1 otherwise . 
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Then 
XM, > “‘, on] = Fp \X) . ..I) n \(Fp n _$Fo _?\ . . . \(F, n _ 1 

provided that for all .i E N such that 1 5 i 5 n, 

F Pi-1 ’ ‘FP’_2 I 
\ . ..\ (F/+ \ X) . ..> C Foi . 

If any of these n inclusions does not hold, then X[p, , &, ._., 8, ] is un- 
defined. 

We adopt the following abbreviations: X$, , . . . . & 1 is abbreviated 
to X[Pr+n I, XL&, ---, PII to X[P,,_, I, and X[P,, ---, Pn , ~1 1 ---, ynz 1 
to X[ fll --, n, y1 --, m ] . Other abbreviations, such as X[ p, y1 i n ) h] should 
be clear from this account. 

Intuitively, the term X[p,,. ] (for n > 0) should be thought of as 
the result, beginning with X E F*, of successively taking complements 
in F pyF/3y ‘.‘, Fpn, provided that each element of F* occurring in this 
process is contained in the next Fill. Some families may be so poorly 
connected that this process cannot be carried very far (without redun- 
dancy), whereas sufficiently rich families may allow the process to con- 
tinue indefinitely (without redundancy). 

An occurrence of a term such as X[/?, ~ m ] in an equation is to be 
understood as being accompanied by the tacit assertion that it is defined 
(otherwise the equation is meaningless). If such a term is to be introdu- 
ced in the course of a proof, it must (strictly speaking) be shown that 
it is defined, although usually this would be clear. We will sometimes 
indicate that the “n” in XC/3 l+n ] denotes an even natural number by 
writing “(n E E)” shortly thereafter; in other cases n E N. Whenever 7 
is said to be a family, we will mean 7 = {Fp: & E B} for some index 
set B. 

Lemma 2.1. Let Fz’ be a family, and let X, Y E F*, then for any n E N, 
if x[P,-+n ] = Y, then Y[/3,+. ] = X. 

Proof. By induction on n. 

Note that X[p 1 _+ n 1 2 Y does not imply Y [& +n 1 C X since Y need 
not be contained in FPn . 
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For any family 9, let = denote the binary relation on F* defined as 
follows: For X, Y E F*, X 3 Y * for some n E ‘E, there is (pi) E Bn 
such that X[p,,, ] = Y. 

Lemma 2.2. E is an equivalence relation on F*. 

Proof. Reflexivity and transitivity are elementary. Symmetry follows 
from the previous lemma. 

A family 9 is consistent (respectively complete) if for any Y E F* 
such that Y[pl__ 1 CF, (mEE),Yn (Y[p 1 __ ,r] ) = 0 (respectively. 
Yu (m$,,,Y1)~9). 

Lemma 2.3. Let 7 be a consistent family, then 
(i) i.f FA & Fy U FP, then 

andF, n FP EF,; 
(ii) if FA E FT, then F, = FT. 

Proof. (i) Suppose F, E Fy u FP, then F-J Fy & FP. (F,\ FhJy] = 
Fy n Fh, so (F,\ F,)[y, A] = F-J Fy C_ Fw. 5s consistent so 

Thus (F,\ FA ) n (F,\(FJ F,)) = 8, from which it follows that 
(E;nF,)\F,=Q),soF,nF,EF,. 

(ii) Suppose FA E Fy , then FA 2 Fy U Fy , so by (i), Fy E F,. 

Lemma 2.4. Let 9 be a consistent family, then for any X E F*, if 

Xl?,+, 13 w,,, 1 sFp (m,n~E),thenX[yl,,l =X[P,,,l. 

Proof. Let X[71+n I, X[P,,, 1 E FP (m, n E E). Define Y = WY,,, I, 
then 
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m + YE E E, so by the consistency of 7, 

from which it follows that X[y, _, n 1 S X[p, __ ] . The converse inclu- 
sion is proved similarly. 

Corollary 2.5. Let 9 be a consistent fami1.y and let W, Z E F* such that 
Z G W = Z, then Z = W. 

Lemma 2.6. Let 9 be a complete family, then if FA E Fy u FP, then 
there is /3 f B such that 

Proof. Define Y = Fyi FA, then Y[y, A] = F-J Fy C_ FP. 9 is complete 
so Y U Y[y, X, ~1 E 7. Y[y, X, ~1 = FP\ (FA\ F,), and the lemma fol- 
lows. 

Lemma 2.7. Let 9 be a complete family, then for any X, Y, Z E F* 
such that X c Y and Y[p +J ~Z~F_Jm~E),thereis,tKBsuch 
thatXU (Fy\ Z) E Fp. 

Proof. Fy\ Z & Y[pl,, , y], so 

By the completeness of 9 there is p E B such that Ffi = Y U Y[P, _+m ? ~1, 
soXu (F,\Z)cFp. 

Lemma 2.8. Let 3 be a consistent complete family, then for any X, X’, 
Z’ E F*, if X = X’ C_ Z’, th en there is /3 E B and Z C_ FD such that X E 
z= Z’. 

Proof. Let X - X’ C_ 2’ C_ Fr, then X’ = X[p,,, ] for some (P,) E Bn 
(n E E). By Lemma 2.7 there is /3 E B such that X U (F,\ Z’) 2 Fp’ 9 is 
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consistent and X[P,,J E Fy, so X n X[&,., 71 = 0. Now Fy\ 2’ 5: 
Fy\ X’ = X[p,,,, 71, SO X n (F,\ 2’) = 9. Thus X E F,(\ (F,\ 2’) = 
2’ [r, fl] . Define 2 = 2’ [y, ,G] , then 2 C: F. and X C 2 - 2’. 

The “dual” of Lemma 2.8 is: “For any consistent complete family 7 
and for any X, 2, 2’ E F*, if X C_ 2 - Z’, then there is X’ E F* such 
that X - X’ & Z’.” This dual is false, as shown by the following counter- 
example. Let 

and let X = {g}, Z = {a, b} and Z’ = {d, e}. 
The following three lemmas are not difficult to prove, but for the 

sake of brevity we omit the proofs. In the proof of Lemma 2.9, (ii) 
follows from (i); Lemma 2.10 is proved using Lemmas 2.3(i) and 2_9(ii): 
and Lemma 2.11 follows from Lemmas 2.2, 2.8 and Corollary 2.5. 

Lemma 2.9. Let 9 be a consistent complete family, then 
(i) for any X E F*, if X[p,,, 1 is defined for m E E \ (0). then there 

is /3 E B such that X[p,,, ,/3, ~_r~ ] =X; 
(ii) for any X, Y E F*, if X z Y. then there are y, X E B such that 

x = Y[y, A]. 

Lemma 2.10. Let 9 be a consistent complete .family and let X, Y E F* 
such that XC_ Y and X, Y[p1,, ] s F0 (m E E), then X E Y[p, im I. 

Lemma 2.11 Let 9 be a consistent complete family and let 2, , Z,, 
w,, w,, W,! W, E F* such that 

E w, E w, - z, , ZT = w, E w, f z, 7 _ 

then Z, E Z,. 

3. Oithocomplemented posets 

For any family 9, let L( 7) denote the set of all equivalence classes 
of F* with respect to z (recall Lemma 2.2). These equivalence classes 
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will eventually become the elements of the various o.m.p. constructed 
from families with various sets of conditions imposed on them. Let 
C : F* + L(9) be such that C(X) is the equivalence class containing 
X E F*. Clearly, for any x E L(7), x f 8, and 9 E x * x = C(9). 

Lemma 3.1. Let 9 be a consistent family, then for any /3 E B, the res- 
triction of C to 3 (Fp) is an injection (is one-one). 

Proof. By Lemma 2.4. 

For any consistent family 9 and any fl E B, define B, = {C(X): Xc 
Fp} (that is, C(3(F,))), then B, 2 L(7). For any x E B, there is (by 
Lemma 3.1) a unique X E 3 (F,) such that C(X) = x, which X we de- 
notebyxp.Ifx~BpnBy,thenC(xi,)=x=C(x,),soxD~x,,,. 

We define a binary relation 2, on B,, and a function NO : B, -+ B, 
thus-: For any x, y E B,, let x sp y * xP C_ yP. For x E B,, define 
N9x = C(Fp\ xp). Clearly, sp and NP are well-defined, and it is also clear 
that (BP, &, N,) is a Boolean lattice since (under the restriction of C 
to 3 (Fp)) it is isomorphic to the Boolean lattice of all subsets of Fb. 
{BP : fl f B} is thus a set of Boolean lattices, said to be generated b_~ 9 y 

and denoted by P(j). 
Adapting a procedure in [ 1 ] , we define a binary relation 5 on L( 7), 

and a function 1 : L(9) + L(9) as follows: For x, y E L(9), let x 5 y e 
x 5, y for some /? E B. For x E L(9), define x1 = Npx for any fl E B 
such that x E B,. It will be shown that if x E B, n B,, then N,x = Nax, 
so 1 is well-defined. The structure (L(9), <,I) is termed the logic gene- 
rated by 7. The construction of (L(9), <,I) depends on the consistency 
of 9 but does not require that 9 be complete. 

Following Finch [ 1, 21, a set 

of Boolean lattices is a weak logical structure if: 
(i) Each B, has the same O-element. 
(ii) For x, y E B, n B,, x 2, y * x sp y. 
(iii) If x <_a y and y 5, z, then there is y E B such that x s7 z. 
(iv) If x E B, n B,, then N,x = NPx. 
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A weak logical structure is a logical structure if in addition it satisfies: 
(v) If x, y E B, n B,, then x va! y = x vp y (that is, the least upper 

bound of x and y is the same in B, as in BP>. 
(vi) If x Ia N&y, x <-p z and Y 17 z, then there is 6 E B such that 

x, Y, 2 E B, - 

Lemma 3.2. Let The a consistent complete family, then the set 2 (7) 
of Boolean lattices generated by 9 is a weak logical structure. 

Proof. We show that f?(T) satisfies conditions (i)-(iv) above. 
(i) Clearly, each B, has the same O-element, namely C(@) = (0). (The 

l-element of each B, is 9.) 
(ii) Let x, y E B, n B, such that x 2, y, then x, = xp E yp. By Lem- 

ma 2.8 there is Y E F* such that x, E Y - yp. yp z y, so Y E y, , so for 
some (P,) E Bm (m E E), y, = Y [PI .+m I. By Lemma 2.10, x, c Y [ pr _+m I , 
sox=C(x,)& CO/,)=y.Similarly,ifx<,y, thenxLpy. 

(iii) Let x 5, y and y sp z, then x, c y, and yp 5 zp. y, = yc3 so by 
Lemma 2.8 there is y E B and 2 & Fy such that y, c 2 3 zp. Thus 

x, 2 y, C Z E Fy , 

so x = C(x, ) L, C(Z) = C(z,> = 2. 

(iv) Let x E B, n B,, then x, - x0, so x, [& _+. n 1 = xp for SOme 
(pi) E Bn (n E E). Since 

we have F,\ x, 3 Fcl\ x0, and so N,x =Npx. Thus e(7) is a weak 
logical structure. 

Let 9 be a family, then x E U 9 is aloof from FO if x $ Ffi and for 
all y E FP there is p E B such that x, y E FP. An element x E U 7 is 
aloof if x is aloof from some FP in 7. For _x E U 7, define x, = C( (x}‘). 
It is easily shown that if 9 is consistent, then (by Lemma 2.4) x, is a 
nonzero element of (L(9), <,I). Define (F,), = {y,: y E FP3. 
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Theorem 3.3. Let FF be a consistent complete family, then the logic 
(L(T ), 5, I) generated by 9 is an orthocomplemen ted poset. Further, 
for any fl E B, (Fp), in an orthogonal subset of L(Y)\ (01, and is a 
frame of L(7) * there is no element of U 9which is aloof -from F,. 

Proof. By Lemma 3.2, A?( 9) is a weak logical structure. It is shown in 
[ 21 that (in the terminology of that paper) the logic associated with a 
weak logical structure is an orthocomplemented poset. Since L( 9) is 
the logic associated with A?( 9), L(9) is an orthocomplemented poset. 

Let /3 E B. For x, y E FO, if x, f yc, then x f y, so (x} C Fi3\ CL’). 
Thus 

Xc = CW) 5 C(F,W) = v,t , 
so {J:, : y E FP} is orthogonal. Since 7 is consistent, yc f 0 for all 

y E Fb. 
Suppose x E U9 is aloof from FP. {x,,) u (F,), is orthogonal, so if 

(F,), is a frame, then x, E (F,), . Suppose so, then x, = yc for some 

Y E FP, so {VI = {xI[P~_,~ ] for some (pi) E Bn (n E E). Since x is aloof 
fromF;,,x,y~F,forsome~~B,so{x},{x}[P1,~]~-E;-ByLem- 

ma 2.4, ix] = {x1 [PI + n 3 = {Y), so x = y. Thus x E FPT a contradiction, 
so (F& is not a frame of L(9). 

Conversely, suppose that (F,,), is not a frame of L(9 ). Then there is 
a nonzero z E L(7)\ (F,), such that {z} U (F,,), is orthogonal. z f 0 
so there is nonempty X E z. Let x E X. If x E Fc,, then x, = 0, so 
x $I! FP. We will show that x is aloof from FP. 

Let y E FP, then x, 5 z 5 yi so yc Lr xi for some y E B. Hence for 
some Y’, X’ c FY, 

{y} = Y’C_X’= F,\{x} 

for any 6 E B such that x E F6. By Lemma 2.8 there is X” E F* such 
that 

{v} c X” = X’ = F, \ {x} . 

For some (P,) E Bm (m E E), F, \ {x) = X” [PI -+m I, SO cY> E X” and 
X”[Pl+m ] E F6 . By Lemma 2.7 there is p E B such that 
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so {y} u {x} C_ F,, . Hence for any y E FP there is ,U E B such that 
x, y E FP, which completes the proof. 

We prove the following lemma here for later reference (atom is de- 
fined in Section 8). 

Lemma 3.4. Let 9 be consistent and complete, and such that 
lFy\ FA If 1 for all 7, X E B, then (UT), is the set of atoms of‘ 

(LQ ), ‘, I‘). 

Proof. Let x E U FFand y E L(9) such that y 5 x,, then there is fl E B’ 
such that yp 5 X = {x}, so by Lemma 2.9(ii), yp C_ {x} [y, A]. 
Fy \ (x} E FA , so Fy \ FA C_ {x} . Since IF7 \ FA I f 1, we have (using 
Lemma 2.3(ii)) that Fy =F,,soy& {x}.Ifyp=@,theny=O.If 
yP = {x}, then y = x,, so x, is an atom of L( 7). Conversely, suppose z 
is an atom of L( 9). Since z # 0, there is X E z such that X # Q). Let 
x E X, then x, 5 C(X) = z. x, # 0, so x, = z, so z E (US),. 

4. Orthomodular posets 

Consistency and completeness gives us an orthocomplemented poset. 
To ensure orthomodularity we require a third condition. A family 7 is 
compact if, whenever Z[ fl 1 --, k ] is defined (k E E), for any Q E B there 
is (Si) E Bn (n E E) such that 

F, n WJ Z[P,,,l>=[~,+.l - 

The following lemma is a direct consequence of this definition. 

Lemma 4.1. Let 7 be a compact family, then for any X, Y, Z’, Z” E F*, 
if X, Y 5 F,, X E Z’, Y c Z” and Z’ = Ztt, then there is p E B and 
Zc FDsuch thatXu Y&ZrZ’. 

Lemma 4.2. Let 7 be a complete compact family and let Z C_ F6 such 
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thatzb+, ] is defined (m E E), then for any ar E B there is v E B 
such that 

(F, n (2 u Z[P~+~ 1 )I u Z[Pl E F,, - 

Proof. Since 7 is compact, 

F, n (ZUZ~~~+,I)~~[&J - 

The result follows from Lemma 2.7 by taking X = F, n (2 u Z[ pl 3 n* ] ) 

and Y = 2[6,,,]. 

Lemma 4.3. Let ‘3 be a consistent complete compact family, and let 
X, Y C_ F, and X’, Y’ _C FO such that X - X’ and Y f Y’, then (XU Y‘) - 
(X’ u Y’). 

Proof. Since X 2 X’ and Y - Y’, there are, by Lemma 2.9(ii), yl, y2, 

A,, h, E B such that X’ = X[y,, y2 1 and Y' = Y[X,, X, 1. 
Since Fy7\ X’C_ Frl, 

t_cl E B SUCK that 
FT2 c FYI U FP, so by Lemma 2.6 there is 

Fpl = ‘FT1\ FT2> u VP\ ‘Fy2\ Fyl >I. 

By Lemma 4.2 there is p2 E B such that 

(FPI n (Y u Y’)) u Yb] _C FP2 . 

Define Y, as the left-hand expression, then since Y, 2 FP2, we have 

Y,\((Xu Y)[al)E(Y() u Y,[P*lNwJ Y)bl) 

= FW2\ (X u Y)[a] 

= (X u Y)[% 112 1 

since (X u Y)[cY] 5 Y[a] C_ FP2. 

F r2 =X’ u (F&X’) c X’ u FYI , 
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so Fy2\ Fyl E X’ E X’ u Y’. Thus (X’ u Y’)[p] 5 Fpl , so (X’ u Y’) 
[p, p1 ] is defined. 

51 =Yu(FAl\Y)CFauFA2. 

so by Lemma 2.3(i), F, n FA2 C_ Fil. NowF, n Y’=(F, n E’̂,\F+u 
(Y n FQ, so F, n Y’ 2 Y. Thus (Fpl n Y’) n F, C Y, and sin& 
<FM1 n Y’)\ F, c Y’\ F, , we have 

Fpl n Y’E YU (Y’\F,). 

Now Fpl n X’ C_ X, SO 

Fpl n(X’u Y’)S(Xu Y)u(Y’\F,). 

(X’ u Y’)[p, pl 1 = ‘Fpl\ F& u VP1 n W’ u Y’)) 

C(Xu Y)u(Y’\F,), 
so 

(X’ u Y’)EP, p1 1 E Fp 1 n RX u Y> ” W’\ F, 1) 

= Y,\ (0-J Y>bl>, 

where Y, was defined above. 
It was proved above that 

y,\ ((X u Y)bl) G (X u Vb, i-9 1 , 

so (X’ U Y’)[& p1 1 E (X U Y)[cq ~~1. By interchanging cu and 0, X and 
Y’, and Y and X’, and substituting vl and v2 for p1 and p2 respectively, 
an exactly parallel argument gives us 

(Y u X)[a, VI] E (Y' u X’)[P, “2 ] . 

The result now follows from these two inclusions by Lemma 2.11. 
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Lemma 4.4. Let 9 be a consistent complete compact family, then the 
set P (9) of Boolean lattices generated by 9 is a logical structure. 

Proof. By Lemma 3.2, P( 7) is a weak logical structure, so we have only 
to show that it satisfies the conditions (v) and (vi) given just prior to 
that lemma. 

(v) Let x, y E B, n B,. Clearly, x va y = C(x& U y,) and x vp y = 
C(xp U y,). x, = xp and y, - yp, so by Lemma 4.3, (xcy U y,) = 
(xg u v,). Thus x v, y = x vp y. 

(vi) Let x, y E B,, x <-p z and y $ z. x, = xp so by Lemma 2.8 there 
is 2 E F* such that x, C_ 2 = zp. Similarly there is 2” E F* such that 
C’&, c_Z’=zy. Z’ = Z”, so b y L emma 4.1 there isv E B and Z E F,? 
such that 

x, u y, E z = Z’ = zp . 

Thus C(X~ ), C(V,>, C(Z) E B,, so x, Y, z E B,. 

Theorem 4.5. Let 9 be a consistent complete compact family, then the 
logic (L(9), 5, I) generated by 9 is an o.m.p. Further, for any y E B, 
(F,), is a_n orthogonal subset of L(T)\(Q), and is a frame of L(9) * 
there is no element of U 9 which is aloof from FT. 

Proof. Using the fact that P (7) is a logical structure (proved above), 
L(7) may be shown to be an orthoposet as in the proof of [ 1, Theorem 
(1. l)] . We will here prove only that L(S) is orthomodular. Let x, y E 
L( 9) be orthogonal, and let x vy = 1. Thus x <-p y’ for some @ E B. 
x vp y is an upper bound in L( 9) to {x, y}, so x vp y = 1. B, is ortho- 
modular (since Boolean), so x = y I. Thus L( 9) is orthomodular, and 
the rest of the theorem follows immediately from Theorem 3.3. 

In order to obtain further results about the frames of our generated 
o.m.p., and about the properties of those pose& we will introduce further 
conditions in addition to the three already introduced. A family 9 is 
compatible if, for any y, h E B, if I Fr \ FA I = 1 then I FA \ Fr I 2 2. 

Lemma 4.6. Let 7 be consistent complete and compatible, then for any 
x, y E U FT, if x, =yC, thenx=y. 
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Proof. By Lemmas 2.1, 2.3(ii) and 2.9(G). 

Let 9 be a family, then an (ascending) chain (X, )6 E a of subsets of 
U 7 is an Fe-chain if X6 E F* for all 6 E A. 7 is comprehensive if for 
any F*-chain (X, )s E A , U {X, : 6 E A} E F*. This condition is intro- 
duced at this stage only to take part in a subsiduary theorem, and will 
appear in its main role in Section 7. It is clear that a finite family is 
comprehensive. 

Theorem 4.7. Let 7 be a consistent complete family such that for any 
0, X, p E B, if Fh n FM f 0 then 

(1) Fp n Fh C F 
P or Fp CI Fp C Fh . 

Then. 
(i) CJ is compact and the logic (L(7), 5, I) generated by 7 is an 

0. m.p. 
(ii) If 9 is compatible and comprehensive, then there is an o.m.p. I’ 

such that for any fl E B, Es is a frame of P. 

Proof. (i) Let 9 be as stated, and let Z[& + 1 be defined (k E E). By 
Lemma 2.9(ii) there are 6,) 6, E B such that Z[&,, ] =Z[6,, 6,]. 

Let Q E B, then to show that CJ is compact it is sufficient to show that 
for some q , v2 E B, F, n 2’ C_ Z[zq , v2 1, where 2’ is defined as 
Zu ZP,, 621. 

If&, n Fs2 =&thenFdI\Z=9,soF,nZ’~Z[6,,a].Suppose 
Fbl nF62f@,thenby(l),F,nF61 GF~20rF,nF~2cF~,.De- 
fine Z, = (F,, n Fd,)\ (FQ Z), then 

F,nZ’=(F,nF,t\FS2)v(F,nFS2\F6~)v(FO!nZ,). 
Thus 

F,nZ’=(F,nFs2\Fsl)V(F,nZ,)c_Z[6,,6,1 
or 

F,nZ’=(F,nF,1\F~2)v(F,nZ,)=Z=Z[~~,~~l. 

Thus 9 is compact, so by Theorem 4.5, (L(9), 5, 1) is an o.m.p. 
(ii) Suppose 9 is comprehensive. Suppose that x E U 9is aloof from 

Fp. Let d denote the set of all X c Fp such that (x} V X E F*. Using 
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the comprehension of 7 and Zorn’s lemma, we find that d has a maxi- 
mal element (wrt c). Detailed considerations, which we omit, involving 
the application of (1) lead to a contradiction, showing that no element 
of U 9 is aloof from F8’ By Theorem 4.5, (Fp)C is a frame of L( 9 ). 

Now suppose that 7 is compatible. By Lemma 4.6, to each element 
y, in (U 7),, there corresponds a unique element of U 7, namely _v” 
Consequently, let P be the o.m.p. obtained from the o.m.p. L(7) by 
replacing yc by y for all y E U 7. Then by the previous paragraph, for 
any fl E B, FP is a frame of P. 

5. The universality of the construction 

We have shown (Theorem 4.5) how an o.m.p. may be constructed 
from any consistent complete compact family. In this section we will 
show that all o.m.p. may be so constructed, more specifically, that gi- 
ven any o.m.p. P there is a consistent complete compact family 7 such 
that the o.m.p. L(FT) is isomorphic to P. 

Recall that a frame F of a poset P is complete if VX exists in P for all 
X S. F. Until Theorem 5.9 let (P, <,I) be an arbitrary o.m.p., and let 7 
be the family of complete frames of P. The following three lemmas are 
easily proved. The proof of Lemma 5.2 is a simple modification of the 
proof of [ 1, Lemma (3.2)], and Lemma 5.3 follows from Lemma 5.2(i) 
using induction. 

Lemma 5.1. Let F, and F, be complete frames of P (that is, in 9 ). Let 
XEF1andYEF2suchthatXn Y=@andXu YisaframeofP, 
thenXU Yisin9. 

Lemma 5.2. Let X, Y C Fa, then 
(i) \z(F& X) = (VX)‘, and 
(ii) X E Y * VX 5 VY. 

Lemma 5.3. Let X E F* and let (pi) E B” (n E N) such that X[P,_,n I is 
defined, then 

v(x[P,+n 1) = 
vx ifnEE, 
(_vx)l otherwise . 
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Lemma 5.4. 7 is consistent and complete. 

Proof. The consistency of 7 follows from the fact that Y c P \ {O;t for 
any Y E F*, using Lemma 5.3. Let YE F”, and define F = Y U 
m,,, 3 PI (swwiw Y[P~+~ ] 2 FJ (m E E)), then F is orthogonal. 
From Lemma 5.3, we have VF = 1, so by Lemma 1.1, F is a frame of P. 
and by Lemma 5.1, F is a complete frame. 

Lemma 5.5. Let XE F, and Y _C FO such that VX = VY, then there are 
61,82~Bsuch that Y=X[6,,6,]. 

Proof. VX = VY, so by Lemma 1.3 there is a complete frame F of P 
such that (VX)’ E B(F). Hence there is 2 E F* such that (VX)‘- = VZ. 
Define FA1 =X U 2 and F62 = Y u 2, then by Lemmas 1.1 and 5.1. 
FGI,F~2~7.XnZ=9=YnZ,~~Y=X[61,6,1. 

-Lemma 5.6. Let X E Fy and 2 2 FO such that VX 5 VZ, then there are 
vl, v2 E B such that X C_ Z[vl , v2 1. 

Proof. By Lemma 1.3 there is X E B and Y, Y’ E F, such that VY = VX 
and VY’ = VZ. By Lemma 5.5 there are 6,) 6,; 6,) 6, E B such that 
Y=X[F,,62] andY’=2[83,84].VY<VY’,sobyLemma5.2(ii), 
Y C_ Y’. By Lemma 5.4, 7 is consistent and complete, so by Lemma 2.8 
there is 2 E F* such that 

xc_z’-Z[63,64] =Z. 

By Lemma 2.9(ii) there are vl, v2 E B such thatZ’=Z[vr, v,], so 
x E Z[v, ) v2] . 

Lemma 5.7. 7 is compact. 

Proof. -Let Z E ‘F* such that Z[/?,,,] is defined (k E E), and let LY E B. 
By Lemma 5.3, VZ = VZ[&+,J, so V(F, n (Z U Z[p,,k I)) 5 VZ. 
The result now follows from Lemma 5.6. 

By Theorem 4.5, (L(9), <,I) is an o.m.p. We now have only to show 
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that L( 7) is isomorphic to P, which we do for the following sense of 
“isomorphic”: Let (S,, $, N,) and (S,, $, N2) be orthocomplemen- 
ted posets, then S, and S, are isomorphic if there is a bijection (a one- 
one onto function) f : S, + S, such that 

(i) _f(Nr x) = N, V(x)), and 
(ii) x 5, Y * f(x) & fti). 

It is easily shown that if S, and S, are isomorphic under f, then for 
any X E S, such that VX exists in S, , f(VX) = Vf(X), where f(X) = 
{f(x): x E X}. 

Theorem 5.8. L(7) and P are isomorphic. 

Proof. For x E L(9), define f(x) = VX for any X E x (the 1.u.b. exists 
by the definition of 7)). For any X, X’ E x there is (P,) E Bn (n E E) 
such that X’ = X[&+,], so by Lemma 5.3, VX’ = VX. Thus f : L(7 ) + 
P is well-defined. 

By Lemma 5.5, fis an injection. Let x E P, then by Lemma 1.3 
there is p E B and X c Fc( such that x = VX. f(C(X)) = VX = x, so f is a 
surjection, and so a bijection. 

Let x E L(7), X E x and fl E B such that X C_ Fb. Then 

f(xl) =f(C(F,\ X)) = V(F$ X) = (VX)’ = (j-(x))’ . 

Let x, y E L( 7) such that x h y. Then x 5, y for some /3 E B, so 
xp S yp. Thus Vx, <_ Vy,, sof(x) <_ f(y). C onversely, suppose f(x) 5 ,fo)), 
then VX <_ VY for some X E x and Y E y . By Lemma 5.6 there are 
q , v3 E B such that X E Y [ v1 , v2 1, so 

x=c(x)ic(Y[v,,v,])=c(Y)=y. 

Thus L(7) and P are isomorphic. 

Theorem 5.9. (i) Every o.m.p. is such that its family of complete frames 
is consistent, complete and compact. 

(ii) From any given consistent complete compact family there can be 
constructed an o.m.p. 

(iii) The o.m.p. constructed from the family of complete frames oj-an 
o.m.p. P is isomorphic to P. 
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Proof. By Theorems 4.5 and 5.8. 

The 9 from which a given o.m.p. P may be constructed may not be 
unique. A problem which deserves further investigation is whether, for 
a given P, there is always some 7 from which (an isomorphic copy of) 
P can be constructed which is in some sense unique among such 9’s. 
For example, is there always such an 7 which is minimal in the sense 
of being properly contained in any other such7 ? 

6. Families of frames 

Let 7 be a consistent complete compact family, then by Theorem 4.5, 
for any p E B, (F,), is an orthogonal subset of the o.m.p. L(7) generated 
by9 . But (F,,),, although contained in L(7) \{O}, may not be a frame 
of L(? ). The question arises as to what further condition 3: must satisfy 
so that (F,,), is a frame of L(ET) for all fl E B. By Theorem 4.5, we have 
only to find a condition which eliminates the possibility of U 9 contain- 
ing an aloof element. The condition defined below accomplishes this, 
and also ensures that the (F& are complete frames of L(7). 

A family 7 is continuous if for any fl E B, any (ascending) chain 

(X6 )6E* inFP,andany YEF*,ifforanyFEAthereareyI,Y2 EH 
such that X, c Y [ y1 , y2 ] , then there are y1 , y2 E B such that U {X, : 

6 f A} E Y[y, , y2 2. Clearly, if the sets in 7 are all finite, then 7 is 
continuous. For X E U?, define X, = {xc : x E A-}, where x, has earlier 
been defined as C( {x}). Clearly, X, C_ L(9). 

Lemma 6.1. Let-9 be a consistent complete compact continuous family. 
Let X E F* and let u E L(7) be such that u is an upper bound in L(T) 
to XC, then there is Y E u such that X E Y. 

Proof. Let u E L(T) be an upper bound in L(7) to X,, and define J as 
the set of all S E X such that there is Y E u such that S C_ Y. For any 
x E X, {x} E d , so J f 8. Using Zorn’s lemma and the continuity of 7 
(and Lemma 2.9(ii)), J may be shown to have a maximal element (wrt 
5) S’. S’ E X, and the assumption of proper inclusion leads to a contra- 
diction of the maximality of S’ (with the aid of Lemma 4.1). Since 
X = S’ E J , there is Y E u such that X 5 Y. 
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Lemma 6.2. A consistent complete compact continuous famil_y 7 is 
such that U 9 contains no aloof element. 

Proof. Suppose 7 contains an aloof element x. From the definition of 
aloofness it follows that there is /3 E B such that x 4 Fp and xi is an up- 
per bound in L(y) to (F&. By Lemma 6.1 there is Y E xi; such that 
F3 c Y. Let 6 E B be such that x E F, , then 

XEF~ =Fp EYEx,L 
so 

x,<C(F,)=C(F,)<C(Y)=x; 

so x, = 0, which is impossible. Thus U 9 contains no aloof element. 

Lemma 6.3. In such a family f7, V(X,) = C(X) for any X E F”. 

Proof. Let X E F*, then clearly C(X) is an upper bound in L( 7) to X, . 
Let u be any such upper bound, then by Lemma 6.1 there is Y E zd such 
that X 2 Y. C(X) L C(Y) = u, so C(X) is the least upper bound in L( 7) 
tax,. 

So far we have introduced six conditions: 
(I) consistency (Section 2), 
(II) completeness (Section 2), 
(III) compactness (Section 4), 
(IV) compatibility (Section 4), 
(V) continuity (Section 6), 
(VI) comprehension (Section 4). 

We will later reintroduce comprehension (Section 7) and introduce: 
(IVS) strong compatibility (Section 8). 

From now on in the statement of lemmas and theorems we will refer to 
these conditions by the corresponding Roman numeral. 

Lemma 6.4. Let 7 be a family satisfying (I)-(III) and (V), then for any 
fl E B, (F,), is a complete frame of L(9 ). 

Proof. By Lemma 6.2, U 7 contains no aloof element, so by Theorem 
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3.3, (F& is a frame of L(9). Let X c (F&, and define X,, = {x E Fb: 
x, E X}. Now X,, E F*, so by Lemma 6.3, V$cX,*>,) = C(X,,). It is 
easily shown than x E (Xc*), * x E x, so (Xc*), = x, so vx = ccx,*x 
Hence (F,,), is a complete frame of L(T). 

Theorem 6.5. Let 9 be a family satisfying (I)-(V), then there is an 
o.m.p. P such, that for any p E B, Ffl is a complete frame of P. 

Proof. By Theorem 4.5 and Lemma 6.4, for any fl E B, (F,), is a com- 
plete frame of the o.m.p. L(T).7 is compatible, so as in the last para- 
graph of the proof of Theorem 4.7, let P be the o.m.p. obtained from 
L(S) by replacing yc by y for all y E U 7, then for any /3 E B. FL, is a 
complete frame of the o.m.p. P. 

Lemma 6.6. Let (P, 5, 1) be an o.m.p. and let 9 be the family o.f com- 
plete frames of P, then7 satisfies (I)-(V). 

Proof. By Theorem 5.8, 7 satisfies (I)-(III). Using Lemma 5.3, we find 
that 9 satisfies (IV). To prove the continuity of 9, consider fl E B, 
Y E F*, and a chain (X, )s E A in Fp such that for all 6 E A there are 
yr, y2 g B such that X, C_ Y [rr, y2]. By Lemma 5.3, VX, < VY for all 
6 E A. FO is complete and U{X, : 6 E A} c FO, so V(U{X,)> exists in 
P. Clearly, V(U {X, }) = V {VX, }. Y is an upper bound in P to (VX, }, 
so V(U {X,}) 2 VY. An application of Lemma 5.6 completes the proof. 

Theorem 6.7. (i) Every o.m.p. is such that its family of complete frames 
satisfies (I)-(V). 

(ii) From any given family7 satisfying (J)-(V) there can be construe 
ted an o.m.p. whose family of complete frames includes 7. 

(iii) The 0.m.p. constructed from the family of complete .frames of 
an o.m.p. P is isomorphic to P. 

Proof. By Theorems 5.9 and 6.5, and by Lemma 6.6. 
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7. Completely orthomodular posets 

In the remainder of the paper we will obtain three further theorems 
of the form of Theorem 6.7, namely, results for (i) completely o.m.p., 
(ii) “A-logics”, and (iii) “weakly atomic” completely o.m.p. For the 
sake of brevity we will (as before) frequently omit proofs or only brief- 
ly describe them. 

To obtain complete orthomodularity in our constructed o.m.p. we 
require that-7 be comprehensive, which notion was defined just prior 
to Theorem 4.7. It will be recalled that a chain (X, )& EA in U 7 is an 
Fe-chain if X, E F* for all 6 E A, and that 9 is comprehensive if for 
any F*-chain e , U e E F*. The index sets A are ordinals, and so are 
well-ordered. 

Lemma 7.1. Let7 be a family satisfying (I)-(III) and (V)-(VI). and 
let X be an orthogonal subset of(W), C_ L(7), then there is 2 E F* 
such that Z, = X. 

Proof. The proof, which in full is lengthy, considers the set C of all F*- 
chains e such that (U C), E X, and the partial ordering 5 on C holding 
between two F*-chains (X6 )& EA and (Xb )6 E A’ when A 5 A’ and for 
all 6 E A, X, G Xk . Zorn’s lemma implies the existence of a maximal 
element @in (C, i). (U e’)c E X, and the assumption that the inclusion 
is proper leads to a contradiction of the maximality of C’ (using Lemma 
6.1) so (U C ‘)c = X. 7 is comprehensive and C ’ is an F*-chain, so 
U C’ E Fk. Hence there is 2 E F* such that 2, = X. 

Let P be an orthocomplemented poset, then Y 2 P is a section of P 
if every nonzero element of P dominates some element of Y. A family 
7 of frames of P is sectionally complete if U7 is a section of P and 7 
is the family of all maximal orthogonal subsets of UT. The following 
lemma is elementary. 

Lemma 7.2. Let 9 be a consistent complete family, then (UT), is a 
section of (L(9), I, I). 

Theorem 7.3. Let 9 be a family satisfying (I)-(III) and (V)-(VI), then 
the logic (L(T), 5, I) generated by 7 is a completely o.m.p., and TC is 
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a sectionally complete family of frames of L(7), where ‘JF, is de.fined as 
C(F& P E H. 

Proof. L(7) is an o.m.p. by Theorem 4.5. Let Y be an orthogonal sub- 
set of L(T), and for y E Y, let [y] be any maximal orthogonal subset 
of elements of (US), dominated by y. By Lemmas 7.2 and 1.2, J: = 

V [y ] . Define X = U { [y ] : y E Y}, then X is an orthogonal subset of 
(US),, so by Lemmas 7.1 and 6.4, VX exists in L(7 ). VX = VY, so 
L( y) is completely orthomodular. 

By Lemma 6.4, Tc is a family of frames of L(7). U( (3) = (U 9)C, so 

by Lemma 7.2, U( 7,)‘is a section of L( 7). To show that Tc is section- 
ally complete we have only to show that 7, is the family of all maximal 
orthogonal subsets of (U 9), . Let 0 E B, then by Lemma 6.4, (F,,), is a 
frame of L(7), and so is a m.o.s. of (U’S),. Conversely, suppose that W 
is a m.o.s. of (U?),, then by Lemma 7.1 there is 2 E F* such that 2, = 
W. For some fl E B, 2 C_ Fp, so W = 2, C (F,), . (Ffl)C is an orthogonal 
subset of (UB), and W is maximal, so W = (F,,), . Thus W E c3,, which 
completes the proof. 

Theorem 7.4. (i) Every completely o.m.p. is such that its fami1.v of 
frames is sectionally complete and satisfies (I)-(VI). 

(ii) From any given family c3 satisfying (I)-(VI) there can be construe 
ted a completely o.m.p. which has 9 as a sectionally complete family of 
f rames. 

(iii) The completely o.m.p. constructed from the family of frames of 
a completely o.m.p. P is isomorphic to P. 

Proof. Let (F’, !$I) be a completely o.m.p., and let 7 be the family of 
frames of P, necessarily complete frames. By Theorem 6.7,9 satisfies 
(I)-(V), and L(9) and P are isomorphic. 7 is the family of all frames 
of P, and so of all maximal orthogonal subsets of U 7, so 9 is sectionally 
complete. A demonstration of the comprehension of Twill complete 
the proof of(i) and (iii). Let e be an F*-chain, then U C is the union of 
a chain of orthogonal subsets of P \ { 0) , and so is an orthogonal subset 
of P \ (0). Ey Zom’s lemma, U C can be extended to a frame of P. 9 
contains all frames of P, so U e f F*. Thus 9’is comprehensive. 

To prove (ii) let 9 be a family satisfying (I)-(VI), then by Theorem 
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7.3, (L(Y), <,I) is a completely o.m.p. and ‘& = {(F,), : 0 E B} is a 
sectionally complete family of frames of L(zT). As in the proof of Theo- 
rem 6.5, let P be the completely o.m.p. obtained from L(Y) by replac- 
ing yc by y for all y E U 9, then 7 is a sectionally complete family of 
frames of P. 

8. A-logics 

For a poset (P, 2) with O-element, x E P\ {0} is an atom if y 5 i~ im- 
plies y = x or y = 0. Let 7 = {{a,+}, {b, c, d}}, then CJ: satisfies (l)--(W), 
so (L(9), <, 1) is an o.m.p., namely, (an isomorphic copy of) the Boolean 
lattice of all subsets of (b, c, d}. a, is not an atom of L.( 9) since c, < a,. 
Thus it is not in general true that if a family satisfies (I)-(VI), then 
(UT), is (or is contained in) the set of atoms of L(7). In fact, there 
exists a family 7’ satisfying (I)-(V) such that no element of (UY), is 
an atom of L(7). This follows, by Lemma 6.6, from the fact that there 
exist Boolean lattices which do not possess atoms. In this section we 
will introduce a condition which (together with consistency and comple- 
teness) ensures that (UT), is the set of atoms of L(9). 

Let (P, <,I) be an orthoposet. A frame of P is atomic if it consists 
entirely of atoms of P. P is an A-logic if for any x, y f P such that x 2 y, 
there is a complete atomic frame F of P such that x, y E B(F), where 
B(F) was earlier defined as (VX: X E F}. It is clear that B(F) is a Boolean 
lattice isomorphic to that of all subsets of F. P is weakly atomic if every 
nonzero element of P dominates some atom of P. Clearly, an A-logic is 
weakly atomic, although a weakly atomic orthoposet need not be an A- 
logic. The definition of an A-logic should be compared with Lemma 1.3, 
from which it follows that an A-logic is an o.m.p. (necessarily weakly 
atomic). To see that a weakly atomic o.m.p. need not be an A-logic we 
have only to consider the Boolean lattice B of all subsets of N which are 
finite or have finite complement in N. B is weakly atomic, possesses one 
atomic frame, and no complete atomic frame, so B is not an A-logic. 

Lemma 8. I. Every weakly atomic completely o.m.p. is an A-logic. 

Proof. Using Lemma 1.2 twice and Zorn’s lemma three times. 
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Later in this section an example will be givenof an A-logic which is 
not completely orthomodular. Thus the class of weakly atomic comple- 
tely o.m.p. is included in the class of A-logics, which is included in the 
class of weakly atomic o.m.p., and in both cases the inclusion is proper. 

A family 7 is strongly compatible if IFO\ FY I # 1 for all 0, y E B. It 
holds trivially that a strongly compatible family is compatible. We de- 
note strong compatibility by (IVS), so that any family satisfying (IV’S) 
satisfies (IV) also. 

Theorem 8.2. (i) Every A-logic is such that its family of complete atomic 
frames satisfies (I)-(M), (IVS) and (V). 

(ii) From any given family 7 satisfying (I)-(III), (IVS) and (V) there 
can be constructed an A-logic whose family of complete atomic frames 
includes 9. 

(iii) The A-logic constructed from the family of complete atomic 
frames of an A-logic P is isomorphic to P. 

Proof. (i) Let (P, <-,I) be an A-logic, then by Lemma 1.3, P is an o.m.p. 
Let 7 be the family of complete atomic frames of P. To show that 9 is 
consistent, complete, compact, and continuous, it suffices to go through 
the proofs of Lemmas 5.2 to 5.7, and that of Lemma 6.6, to ascertain t,hat 
they remain valid when P is an A-logic (not just an o.m.p.) and 9 is the 
family of complete atomic frames of P. Since P is an A-logic, F in Lemma 
5.5 and Fh in Lemma 5.6 may be chosen so as to be atomic frames. 
These are the only modifications necessary, so 3: satisfies (I)-(III) and 
(V). Suppose now that 9 is not strongly compatible, then there are p, 7 
E B and an atom a of P such that Fp \ FY = (a). There is an atom 
b E Fy\ Fp, and 

= V(F& F,) by Lemma 5.3 , 

= a. 

Thus b 2 a, and a and b xre atoms, so a = b, so b $ F+ , a contradiction. 
Hence 7 satisfies (IVS) also. 

(ii) Let 9 be as stated, then by Theorem 4.5, L( S> is orthomodular, 
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and so is an orthoposet. By Lemmas 3.4 and 6.4, for any /3 E B, (F,), is 
a complete atomic frame of L(9). Let X, y E L( 7) such that x 2 J’. then 
xcI c yp for some 0 E B. By Lemma 6.3, x = C(xP) = V((x,),) and .F = 
W,) = WY,),), so x, y E B((FP),). Since (FP), is a complete atomic 
frame of L(cJ), it follows that L(9) is an A-logic. 9 is compatible, so as 
in the proof of Theorem 6.5 there is an A-logic P such that for any 
6 E B, Fp is a complete atomic frame of P. 

(iii) As in the proof of(i) it suffices to check that the proof of Theo- 
rem 5.8 remains valid when P is an A-logic and 7 is the family of com- 
plete atomic frames of P (remembering that Lemmas 5.2 to 5.7 are so 
valid). Since Fp may be chosen so as to be an atomic frame, the proof 
does in fact remain valid. 

An unsolved problem: Let L(F) be the A-logic generated by a family 
satisfying (I)-(III), (IVS) and (V), then is {(F,), : p E B} identical to, 
and not just contained in (as proved above), the family of complete 
atomic frames of L(73? This question has a negative answer if we omit 
“complete”, as can be found by considering the family 7 = (F, : M E IV}, 

where F, is defined as {a, , a2, . . . . a,, , b, , cn } . It can be shown that 9 
satisfies (I)-(III), (IVS) and (V), so by Theorem 8.2, L(ET) is an A-logic. 
Define A = (a2, a4, a6 , . ..}. then A, is an orthogonal set of atoms of 
L( 3 ), and so can be extended to an atomic frame F of L( 9 ), and it is 
elear that F $! 9. It can also be shown that A, has no 1.u.b. in L( 9), SO 

F is not a complete frame. Thus, as promised earlier, L( Y) is an instance 
of an A-logic which is not a complete orthoposet, and so is not comple- 
tely orthomodular. 

9. Weakly atomic completely orthomodular posets 

Theorem 9.1. (i) Every weakly atomic ccampletely o.m.p. is such that 
its family of atomic frames satisfies (I)-(III), (IVS) and (V)-(M). 

(ii) From any given family Y satisfying these conditions there can be 
constructed a weakly atomic completely o.m.p. whose family of atomic 
frames is 9 . 

(iii) The weakly atomic completely o.m.p. constructed from the fa- 
mily of atomic frames of a weakly atomic completely o.m.p. P is isomor- 
phic to P. 



(ii) Let 9 be as stated, then by Theorem 7.3, L(S) is a completely 
o.m.p. and 7, is a sectionally complete family of frames of L(7). Thus 
9, is the family of all maximal orthogonal subsets of U(7, ). By Lemma 
3.4, U( Tc) = (lJ9jc is the set of atoms of L(7), so 7, is the family of 
all atomic frames of L(7). ‘Since 7 c is sectionally complete, (U 7 )c = 
U(7,) is a section of L(7), so every nonzero element of L(7) dominates 
some element of (U Tjc and so dominates some atom of L( ET), so L( 9 ) 
is weakly atomic. Since 7 is compatible, we may replace the elements 
of each (F,, jc by those of FB (as in the proof of Theorem 6.7) to obtain 
our result. 

(iii) This follows directly from Lemma 8.1 and Theorem 8.2(iii ). 

In order to demonstrate that a given family 7 generates an o.m -P- 
(respectively, a weakly atomic completely o.m.p.), it is more convenient 
in practice to show that 9 satisfies certain conditions which, although 
perhaps stronger than (I)-(III) (respectively, (I)-(III), (IVS) and (V\ 
(VI)), are yet easier to demonstrate as holding for 9. The two theorems 
following are steps in this direction. Let 9 = (F, : fl E B} , then (pi) E Bn 
is irredundant if Fpi f F6,1 foralliENsuchthat 1 <_i<n, 
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Proof. (i) Let (P, <,I) be a weakly atomic completely o.m.p. and let9 
be the family of atomic (necessarily complete) frames of P. By Lemma 
8.1, P is an A-logic. By Lemma 8.2(i), 7 satisfies (I)-(III), (IVS) and 
(V). By adding an “atomic” here and there in the demonstration of 
comprehension in the proof of Theorem 7.4, we find that 7 satisfies 
(VI). 

Theorem 9.2. Let Fi be finite and such that 
(i) for any X E F*, if X[&,, ] is defined (n E E) and (pi j is irredun- 

dant, then n < 2;and 
(ii) if FA C-I Fp f 8, then FY n FA & Fp or FY n Fp 2 F,; 

then the logic L(9) generated by 7 is an o.m.p. and each (F,,), is a 
frame thereof 

Proof. Condition (i) implies that 7 is consistent and complete (this im- 
plication not depending on the finiteness of 9 j. Since a finite family is 
comprehensive, the result follows from (the proof of) Theorem 4.7. 
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Theorem 9.3. Let ET be such that 
(ij if FY f F,, then IF7 n F,I i 1; 
(ii) IFY\ F, I # 1; and 
(iii)ifF,#F,andIF,~F,I=1=IF,nF,I,thenF,nF,=~; 

then there is a weakly atomic completely o.m.p. whose family of atomic 
frames is 7. 

Proof. From (ij and (iii> we may prove condition (ii) of Theorem 9.2, 
showing that 7 is consistent and complete. Compactness is proved using 
Theorem 4.7(i). (ii) is just strong compatibility, and continuity and 
comprehension follow from (ii) and (iii) by elementary (but lengthy) 
argument. The result then follows from Theorem 9.l(ii). 

The usefulness of such results is that they permit us to consider com- 
plicated o.m.p. by means of far less complicated representations of fa- 
milies (for example, the A-logic generated by the family {F,,, : n E N} 
defined earlier). As a simpler example, consider the family 7 whose 
seven elements are the colinear sets below: 

By Theorem 9.3 there is a weakly atomic completely o.m.p. P whose 
family of atomic frames is 7 ( IPI = 44). Suppose P admits a normed 
orthovaluation p : P + [ 0, 11, then (as is true of any orthoposet P) 
Z { p(x j: x E F}= 1 for any frame F of P. By considering first the hori- 
zontal frames of P and then the vertical ones, we conclude that 3 = 4 
(as in [ 33 ). Thus P does not admit a normed orthovaluation. Hence we 
see how this investigation of the structure of o.m.p. may prove useful in 
the practical matter of finding counter-examples to false conjectures in 
the theory of orthomodular posets. 

Note added in proof. The results in this paper were all obtained in 1970 
during the author’s final undergraduate year at Monash University. They 
constitute the first and the last contribution to mathematics by the 
author, who, preferring to work in the field of Mahayana Buddhist 
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philosophy, invites all interested mathematicians to make whatever use they 
they can of these results. 
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